Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
medRxiv ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38699325

ABSTRACT

Epidemiologic studies demonstrate an association between early-life respiratory illnesses (RIs) and the development of childhood asthma. However, it remains uncertain whether these children are predisposed to both conditions or if early-life RIs induce alterations in airway function, immune responses, or other human biology that contribute to the development of asthma. Puerto Rican children experience a disproportionate burden of early-life RIs and asthma, making them an important population for investigating this complex interplay. PRIMERO, the Puerto Rican Infant Metagenomics and Epidemiologic Study of Respiratory Outcomes , recruited pregnant women and their newborns to investigate how the airways develop in early life among infants exposed to different viral RIs, and will thus provide a critical understanding of childhood asthma development. As the first asthma birth cohort in Puerto Rico, PRIMERO will prospectively follow 2,100 term healthy infants. Collected samples include post-term maternal peripheral blood, infant cord blood, the child's peripheral blood at the year two visit, and the child's nasal airway epithelium, collected using minimally invasive nasal swabs, at birth, during RIs over the first two years of life, and at annual healthy visits until age five. Herein, we describe the study's design, population, recruitment strategy, study visits and procedures, and primary outcomes.

2.
Sci Immunol ; 9(93): eadj7363, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427721

ABSTRACT

Peyer's patches (PPs) are lymphoid structures situated adjacent to the intestinal epithelium that support B cell responses that give rise to many intestinal IgA-secreting cells. Induction of isotype switching to IgA in PPs requires interactions between B cells and TGFß-activating conventional dendritic cells type 2 (cDC2s) in the subepithelial dome (SED). However, the mechanisms promoting cDC2 positioning in the SED are unclear. Here, we found that PP cDC2s express GPR35, a receptor that promotes cell migration in response to various metabolites, including 5-hydroxyindoleacetic acid (5-HIAA). In mice lacking GPR35, fewer cDC2s were found in the SED, and frequencies of IgA+ germinal center (GC) B cells were reduced. IgA plasma cells were reduced in both the PPs and lamina propria. These phenotypes were also observed in chimeric mice that lacked GPR35 selectively in cDCs. GPR35 deficiency led to reduced coating of commensal bacteria with IgA and reduced IgA responses to cholera toxin. Mast cells were present in the SED, and mast cell-deficient mice had reduced PP cDC2s and IgA+ cells. Ablation of tryptophan hydroxylase 1 (Tph1) in mast cells to prevent their production of 5-HIAA similarly led to reduced PP cDC2s and IgA responses. Thus, mast cell-guided positioning of GPR35+ cDC2s in the PP SED supports induction of intestinal IgA responses.


Subject(s)
B-Lymphocytes , Mast Cells , Animals , Mice , Hydroxyindoleacetic Acid , Cell Movement , Immunoglobulin A, Secretory , Peyer's Patches , Receptors, G-Protein-Coupled/genetics
3.
J Clin Invest ; 134(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451724

ABSTRACT

The appearance of senescent cells in age-related diseases has spurred the search for compounds that can target senescent cells in tissues, termed senolytics. However, a major caveat with current senolytic screens is the use of cell lines as targets where senescence is induced in vitro, which does not necessarily reflect the identity and function of pathogenic senescent cells in vivo. Here, we developed a new pipeline leveraging a fluorescent murine reporter that allows for isolation and quantification of p16Ink4a+ cells in diseased tissues. By high-throughput screening in vitro, precision-cut lung slice (PCLS) screening ex vivo, and phenotypic screening in vivo, we identified a HSP90 inhibitor, XL888, as a potent senolytic in tissue fibrosis. XL888 treatment eliminated pathogenic p16Ink4a+ fibroblasts in a murine model of lung fibrosis and reduced fibrotic burden. Finally, XL888 preferentially targeted p16INK4a-hi human lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis (IPF), and reduced p16INK4a+ fibroblasts from IPF PCLS ex vivo. This study provides proof of concept for a platform where p16INK4a+ cells are directly isolated from diseased tissues to identify compounds with in vivo and ex vivo efficacy in mice and humans, respectively, and provides a senolytic screening platform for other age-related diseases.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Fibroblasts , Idiopathic Pulmonary Fibrosis , Animals , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Mice , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/drug effects , Cellular Senescence/drug effects , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Senotherapeutics/pharmacology , Male , Lung/pathology , Lung/metabolism , Female , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics
4.
Ann Am Thorac Soc ; 21(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37903340

ABSTRACT

"Translational medicine" has been a buzzword for over two decades. The concept was intended to be lofty, to reflect a new "bench-to-bedside" approach to basic and clinical research that would bridge fields, close gaps, accelerate innovation, and shorten the time and effort it takes to bring novel technologies from basic discovery to clinical application. Has this approach been successful and lived up to its promise? Despite incredible scientific advances and innovations developed within academia, successful clinical translation into real-world solutions has been difficult. This has been particularly challenging within the pulmonary field, because there have been fewer U.S. Food and Drug Administration-approved drugs and higher failure rates for pulmonary therapies than with other common disease areas. The American Thoracic Society convened a working group with the goal of identifying major challenges related to the commercialization of technologies within the pulmonary space and opportunities to enhance this process. A survey was developed and administered to 164 participants within the pulmonary arena. This report provides a summary of these survey results. Importantly, this report identifies a number of poorly recognized challenges that exist in pulmonary academic settings, which likely contribute to diminished efficiency of commercialization efforts, ultimately hindering the rate of successful clinical translation. Because many innovations are initially developed in academic settings, this is a global public health issue that impacts the entire American Thoracic Society community. This report also summarizes key resources and opportunities and provides recommendations to enhance successful commercialization of pulmonary technologies.


Subject(s)
Biomedical Technology , Pulmonary Medicine , Translational Science, Biomedical , Humans , United States
5.
bioRxiv ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37790363

ABSTRACT

Microglia diversity emerges from interactions between intrinsic genetic programs and environment-derived signals, but how these processes unfold and interact in the developing brain remains unclear. Here, we show that radial glia-expressed integrin beta 8 (ITGB8) expressed in radial glia progenitors activates microglia-expressed TGFß1, permitting microglial development. Domain-restricted deletion of Itgb8 in these progenitors establishes complementary regions with developmentally arrested "dysmature" microglia that persist into adulthood. In the absence of autocrine TGFß1 signaling, we find that microglia adopt a similar dysmature phenotype, leading to neuromotor symptoms almost identical to Itgb8 mutant mice. In contrast, microglia lacking the TGFß signal transducers Smad2 and Smad3 have a less polarized dysmature phenotype and correspondingly less severe neuromotor dysfunction. Finally, we show that non-canonical (Smad-independent) signaling partially suppresses disease and development associated gene expression, providing compelling evidence for the adoption of microglial developmental signaling pathways in the context of injury or disease.

6.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749326

ABSTRACT

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Subject(s)
Alzheimer Disease , Female , Mice , Humans , Animals , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Microglia/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Disease Models, Animal
7.
Cell ; 186(19): 4007-4037, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37714133

ABSTRACT

The TGF-ß regulatory system plays crucial roles in the preservation of organismal integrity. TGF-ß signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-ß signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-ß coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-ß system.


Subject(s)
Signal Transduction , Transforming Growth Factor beta , Animals , Adaptation, Physiological , Cell Proliferation , Embryonic Development
8.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37311583

ABSTRACT

Immunological targeting of pathological cells has been successful in oncology and is expanding to other pathobiological contexts. Here, we present a flexible platform that allows labeling cells of interest with the surface-expressed model antigen ovalbumin (OVA), which can be eliminated via either antigen-specific T cells or newly developed OVA antibodies. We demonstrate that hepatocytes can be effectively targeted by either modality. In contrast, pro-fibrotic fibroblasts associated with pulmonary fibrosis are only eliminated by T cells in initial experiments, which reduced collagen deposition in a fibrosis model. This new experimental platform will facilitate development of immune-based approaches to clear potential pathological cell types in vivo.


Subject(s)
Antibodies , Pulmonary Fibrosis , Humans , Fibroblasts , Hepatocytes , Kinetics
9.
Gastroenterology ; 164(4): 619-629, 2023 04.
Article in English | MEDLINE | ID: mdl-36634824

ABSTRACT

BACKGROUND & AIMS: Better biomarkers for prediction of ulcerative colitis (UC) development and prognostication are needed. Anti-integrin αvß6 (anti-αvß6) autoantibodies have been described in patients with UC. We tested for the presence of anti-αvß6 antibodies in the preclinical phase of UC and studied their association with disease-related outcomes after diagnosis. METHODS: Anti-αvß6 autoantibodies were measured in 4 longitudinal serum samples collected from 82 subjects who later developed UC and 82 matched controls from a Department of Defense preclinical cohort (PREDICTS [Proteomic Evaluation and Discovery in an IBD Cohort of Tri-service Subjects]). In a distinct, external validation cohort (Crohn's and Colitis Canada Genetic Environmental Microbial project cohort), we tested 12 pre-UC subjects and 49 matched controls. Furthermore, anti-αvß6 autoantibodies were measured in 2 incident UC cohorts (COMPASS [Comprehensive Care for the Recently Diagnosed IBD Patients], n = 55 and OSCCAR [Ocean State Crohn's and Colitis Area Registry], n = 104) and associations between anti-αvß6 autoantibodies and UC-related outcomes were defined using Cox proportional hazards model. RESULTS: Anti-αvß6 autoantibodies were significantly higher among individuals who developed UC compared with controls up to 10 years before diagnosis in PREDICTS. The anti-αvß6 autoantibody seropositivity was 12.2% 10 years before diagnosis and increased to 52.4% at the time of diagnosis in subjects who developed UC compared with 2.7% in controls across the 4 time points. Anti-αvß6 autoantibodies predicted UC development with an area under the curve of at least 0.8 up to 10 years before diagnosis. The presence of anti-αvß6 autoantibodies in preclinical UC samples was validated in the GEM cohort. Finally, high anti-αvß6 autoantibodies was associated with a composite of adverse UC outcomes, including hospitalization, disease extension, colectomy, systemic steroid use, and/or escalation to biologic therapy in recently diagnosed UC. CONCLUSIONS: Anti-integrin αvß6 autoantibodies precede the clinical diagnosis of UC by up to 10 years and are associated with adverse UC-related outcomes.


Subject(s)
Colitis, Ulcerative , Colitis , Crohn Disease , Humans , Colitis, Ulcerative/drug therapy , Autoantibodies , Proteomics , Crohn Disease/drug therapy , Biomarkers , Colitis/complications
10.
Int J Biol Sci ; 19(1): 156-166, 2023.
Article in English | MEDLINE | ID: mdl-36594095

ABSTRACT

Rationale: The αvß6- and αvß8-integrins, two cell-adhesion receptors upregulated in many tumors and involved in the activation of the latency associated peptide (LAP)/TGFß complex, represent potential targets for tumor imaging and therapy. We investigated the tumor-homing properties of a chromogranin A-derived peptide containing an RGDL motif followed by a chemically stapled alpha-helix (called "5a"), which selectively recognizes the LAP/TGFß complex-binding site of αvß6 and αvß8. Methods: Peptide 5a was labeled with IRDye 800CW (a near-infrared fluorescent dye) or with 18F-NOTA (a label for positron emission tomography (PET)); the integrin-binding properties of free peptide and conjugates were then investigated using purified αvß6/αvß8 integrins and various αvß6/αvß8 single - or double-positive cancer cells; tumor-homing, biodistribution and imaging properties of the conjugates were investigated in subcutaneous and orthotopic αvß6-positive carcinomas of the pancreas, and in mice bearing subcutaneous αvß8-positive prostate tumors. Results: In vitro studies showed that 5a can bind both integrins with high affinity and inhibits cell-mediated TGFß activation. The 5a-IRDye and 5a-NOTA conjugates could bind purified αvß6/αvß8 integrins with no loss of affinity compared to free peptide, and selectively recognized various αvß6/αvß8 single- or double-positive cancer cells, including cells from pancreatic carcinoma, melanoma, oral mucosa, bladder and prostate cancer. In vivo static and dynamic optical near-infrared and PET/CT imaging and biodistribution studies, performed in mice with subcutaneous and orthotopic αvß6-positive carcinomas of the pancreas, showed high target-specific uptake of fluorescence- and radio-labeled peptide by tumors and low non-specific uptake in other organs and tissues, except for excretory organs. Significant target-specific uptake of fluorescence-labeled peptide was also observed in mice bearing αvß8-positive prostate tumors. Conclusions: The results indicate that 5a can home to αvß6- and/or αvß8-positive tumors, suggesting that this peptide can be exploited as a ligand for delivering imaging or anticancer agents to αvß6/αvß8 single- or double-positive tumors, or as a tumor-homing inhibitor of these TGFß activators.


Subject(s)
Carcinoma , Pancreatic Neoplasms , Prostatic Neoplasms , Male , Animals , Mice , Humans , Chromogranin A/metabolism , Positron Emission Tomography Computed Tomography , Tissue Distribution , Peptides/chemistry , Integrins/metabolism , Transforming Growth Factor beta/metabolism
11.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187712

ABSTRACT

Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFß) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFß signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFß signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFb signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.

12.
Science ; 378(6616): 192-201, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36227993

ABSTRACT

We engineered an ultrasensitive reporter of p16INK4a, a biomarker of cellular senescence. Our reporter detected p16INK4a-expressing fibroblasts with certain senescent characteristics that appeared shortly after birth in the basement membrane adjacent to epithelial stem cells in the lung. Furthermore, these p16INK4a+ fibroblasts had enhanced capacity to sense tissue inflammation and respond through their increased secretory capacity to promote epithelial regeneration. In addition, p16INK4a expression was required in fibroblasts to enhance epithelial regeneration. This study highlights a role for p16INK4a+ fibroblasts as tissue-resident sentinels in the stem cell niche that monitor barrier integrity and rapidly respond to inflammation to promote tissue regeneration.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Epithelial Cells , Fibroblasts , Genes, Reporter , Lung , Regeneration , Stem Cell Niche , Humans , Basement Membrane/cytology , Basement Membrane/physiology , Biomarkers/metabolism , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Fibroblasts/metabolism , Inflammation/metabolism , Lung/pathology , Lung/physiology , Epithelial Cells/physiology , Stem Cell Niche/physiology
13.
Front Immunol ; 13: 880887, 2022.
Article in English | MEDLINE | ID: mdl-35634278

ABSTRACT

Macrophages are paracrine signalers that regulate tissular responses to injury through interactions with parenchymal cells. Connexin hemichannels have recently been shown to mediate efflux of ATP by macrophages, with resulting cytosolic calcium responses in adjacent cells. Here we report that lung macrophages with deletion of connexin 43 (MacΔCx43) had decreased ATP efflux into the extracellular space and induced a decreased cytosolic calcium response in co-cultured fibroblasts compared to WT macrophages. Furthermore, MacΔCx43 mice had decreased lung fibrosis after bleomycin-induced injury. Interrogating single cell data for human and mouse, we found that P2rx4 was the most highly expressed ATP receptor and calcium channel in lung fibroblasts and that its expression was increased in the setting of fibrosis. Fibroblast-specific deletion of P2rx4 in mice decreased lung fibrosis and collagen expression in lung fibroblasts in the bleomycin model. Taken together, these studies reveal a Cx43-dependent profibrotic effect of lung macrophages and support development of fibroblast P2rx4 as a therapeutic target for lung fibrosis.


Subject(s)
Connexin 43 , Idiopathic Pulmonary Fibrosis , Adenosine Triphosphate/metabolism , Animals , Bleomycin/pharmacology , Calcium/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Macrophages/metabolism , Mice , Mice, Knockout
14.
Nature ; 604(7905): 337-342, 2022 04.
Article in English | MEDLINE | ID: mdl-35355021

ABSTRACT

Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.


Subject(s)
Dermatitis, Atopic , PPAR gamma , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Mice , Obesity/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Precision Medicine , Sequence Analysis, RNA , Th2 Cells/metabolism
15.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L564-L580, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35170357

ABSTRACT

After lung injury, damage-associated transient progenitors (DATPs) emerge, representing a transitional state between injured epithelial cells and newly regenerated alveoli. DATPs express profibrotic genes, suggesting that they might promote idiopathic pulmonary fibrosis (IPF). However, the molecular pathways that induce and/or maintain DATPs are incompletely understood. Here we show that the bifunctional kinase/RNase-IRE1α-a central mediator of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress is a critical promoter of DATP abundance and function. Administration of a nanomolar-potent, monoselective kinase inhibitor of IRE1α (KIRA8)-or conditional epithelial IRE1α gene knockout-both reduce DATP cell number and fibrosis in the bleomycin model, indicating that IRE1α cell-autonomously promotes transition into the DATP state. IRE1α enhances the profibrotic phenotype of DATPs since KIRA8 decreases expression of integrin αvß6, a key activator of transforming growth factor ß (TGF-ß) in pulmonary fibrosis, corresponding to decreased TGF-ß-induced gene expression in the epithelium and decreased collagen accumulation around DATPs. Furthermore, IRE1α regulates DNA damage response (DDR) signaling, previously shown to promote the DATP phenotype, as IRE1α loss-of-function decreases H2AX phosphorylation, Cdkn1a (p21) expression, and DDR-associated secretory gene expression. Finally, KIRA8 treatment increases the differentiation of Krt19CreERT2-lineage-traced DATPs into type 1 alveolar epithelial cells after bleomycin injury, indicating that relief from IRE1α signaling enables DATPs to exit the transitional state. Thus, IRE1α coordinates a network of stress pathways that conspire to entrap injured cells in the DATP state. Pharmacological blockade of IRE1α signaling helps resolve the DATP state, thereby ameliorating fibrosis and promoting salutary lung regeneration.


Subject(s)
Endoribonucleases , Idiopathic Pulmonary Fibrosis , Apoptosis/physiology , Endoplasmic Reticulum Stress/physiology , Endoribonucleases/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Protein Serine-Threonine Kinases/genetics
16.
Nat Commun ; 12(1): 6228, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711823

ABSTRACT

Presence of TGFß in the tumor microenvironment is one of the most relevant cancer immune-escape mechanisms. TGFß is secreted in an inactive form, and its activation within the tumor may depend on different cell types and mechanisms than its production. Here we show in mouse melanoma and breast cancer models that regulatory T (Treg) cells expressing the ß8 chain of αvß8 integrin (Itgß8) are the main cell type in the tumors that activates TGFß, produced by the cancer cells and stored in the tumor micro-environment. Itgß8 ablation in Treg cells impairs TGFß signalling in intra-tumoral T lymphocytes but not in the tumor draining lymph nodes. Successively, the effector function of tumor infiltrating CD8+ T lymphocytes strengthens, leading to efficient control of tumor growth. In cancer patients, anti-Itgß8 antibody treatment elicits similar improved cytotoxic T cell activation. Thus, this study reveals that Treg cells work in concert with cancer cells to produce bioactive-TGFß and to create an immunosuppressive micro-environment.


Subject(s)
Integrins/immunology , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/immunology , Animals , Female , Humans , Integrins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/genetics , Tumor Microenvironment
17.
JCI Insight ; 6(21)2021 11 08.
Article in English | MEDLINE | ID: mdl-34554928

ABSTRACT

Fibrotic posterior capsular opacification (PCO), a major complication of cataract surgery, is driven by transforming growth factor-ß (TGF-ß). Previously, αV integrins were found to be critical for the onset of TGF-ß-mediated PCO in vivo; however, the functional heterodimer was unknown. Here, ß8 integrin-conditional knockout (ß8ITG-cKO) lens epithelial cells (LCs) attenuated their fibrotic responses, while both ß5 and ß6 integrin-null LCs underwent fibrotic changes similar to WT at 5 days post cataract surgery (PCS). RNA-Seq revealed that ß8ITG-cKO LCs attenuated their upregulation of integrins and their ligands, as well as known targets of TGF-ß-induced signaling, at 24 hours PCS. Treatment of ß8ITG-cKO eyes with active TGF-ß1 at the time of surgery rescued the fibrotic response. Treatment of WT mice with an anti-αVß8 integrin function blocking antibody at the time of surgery ameliorated both canonical TGF-ß signaling and LC fibrotic response PCS, and treatment at 5 days PCS, after surgically induced fibrotic responses were established, largely reversed this fibrotic response. These data suggest that αVß8 integrin is a major regulator of TGF-ß activation by LCs PCS and that therapeutics targeting αVß8 integrin could be effective for fibrotic PCO prevention and treatment.


Subject(s)
Capsule Opacification/prevention & control , Cataract/prevention & control , Integrins/therapeutic use , Animals , Humans , Mice
18.
Cell Rep ; 36(1): 109309, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233193

ABSTRACT

αvß8 integrin, a key activator of transforming growth factor ß (TGF-ß), inhibits anti-tumor immunity. We show that a potent blocking monoclonal antibody against αvß8 (ADWA-11) causes growth suppression or complete regression in syngeneic models of squamous cell carcinoma, mammary cancer, colon cancer, and prostate cancer, especially when combined with other immunomodulators or radiotherapy. αvß8 is expressed at the highest levels in CD4+CD25+ T cells in tumors, and specific deletion of ß8 from T cells is as effective as ADWA-11 in suppressing tumor growth. ADWA-11 increases expression of a suite of genes in tumor-infiltrating CD8+ T cells normally inhibited by TGF-ß and involved in tumor cell killing, including granzyme B and interferon-γ. The in vitro cytotoxic effect of tumor CD8 T cells is inhibited by CD4+CD25+ cells, and this suppressive effect is blocked by ADWA-11. These findings solidify αvß8 integrin as a promising target for cancer immunotherapy.


Subject(s)
Immunity , Immunotherapy , Integrins/metabolism , Models, Biological , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , Antibodies, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Granzymes/metabolism , Interferon-gamma/metabolism , Lymphocyte Depletion , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction , Smad3 Protein/metabolism , Survival Analysis , T-Lymphocytes, Cytotoxic/immunology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
19.
J Clin Invest ; 131(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-33956668

ABSTRACT

Severe asthma remains challenging to manage and has limited treatment options. We have previously shown that targeting smooth muscle integrin α5ß1 interaction with fibronectin can mitigate the effects of airway hyperresponsiveness by impairing force transmission. In this study, we show that another member of the integrin superfamily, integrin α2ß1, is present in airway smooth muscle and capable of regulating force transmission via cellular tethering to the matrix protein collagen I and, to a lesser degree, laminin-111. The addition of an inhibitor of integrin α2ß1 impaired IL-13-enhanced contraction in mouse tracheal rings and human bronchial rings and abrogated the exaggerated bronchoconstriction induced by allergen sensitization and challenge. We confirmed that this effect was not due to alterations in classic intracellular myosin light chain phosphorylation regulating muscle shortening. Although IL-13 did not affect surface expression of α2ß1, it did increase α2ß1-mediated adhesion and the level of expression of an activation-specific epitope on the ß1 subunit. We developed a method to simultaneously quantify airway narrowing and muscle shortening using 2-photon microscopy and demonstrated that inhibition of α2ß1 mitigated IL-13-enhanced airway narrowing without altering muscle shortening by impairing the tethering of muscle to the surrounding matrix. Our data identified cell matrix tethering as an attractive therapeutic target to mitigate the severity of airway contraction in asthma.


Subject(s)
Asthma/metabolism , Collagen Type I/metabolism , Integrin alpha2beta1/metabolism , Trachea/metabolism , Animals , Asthma/pathology , Cell Line , Constriction, Pathologic/metabolism , Humans , Interleukin-13/metabolism , Mice
20.
J Pathol ; 253(4): 366-373, 2021 04.
Article in English | MEDLINE | ID: mdl-33433924

ABSTRACT

No effective therapy exists for fatal fibrosis. New therapeutic targets are needed for hepatic fibrosis because the incidence keeps increasing. The activation and differentiation of fibroblasts into myofibroblasts that causes excessive matrix deposition is central to fibrosis. Here, we investigated whether (and which) integrin receptors for matrix proteins activate hepatic stellate cells (HSCs). First, integrin α-subunits were investigated systematically for their expression over the course of HSC activation and their distribution on fibroblasts and other systemic primary cells. The most upregulated in plate culture-activated HSCs and specifically expressed across fibroblast linages was the α8 subunit. An anti-α8 neutralizing mAb was evaluated in three different murine fibrosis models: for cytotoxic (CCl4 treatment), non-alcoholic steatohepatitis-associated and cholestatic fibrosis. In all models, pathology and fibrosis markers (hydroxyproline and α-smooth muscle actin) were improved following the mAb injection. We also CCl4 -treated mice with inducible Itga8-/-; these mice were protected from increased hydroxyproline levels. Furthermore, ITGA8 was upregulated in specimens from 90 patients with liver fibrosis, indicating the relevance of our findings to liver fibrosis in people. Mechanistically, inhibition or ligand engagement of HSC α8 suppressed and enhanced myofibroblast differentiation, respectively, and HSC/fibroblast α8 activated latent TGFß. Finally, integrin α8ß1 potentially fulfils the growing need for anti-fibrotic drugs and is an integrin not to be ignored. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Hepatic Stellate Cells/metabolism , Integrins/metabolism , Liver Cirrhosis/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Mice , Mice, Inbred C57BL , Myofibroblasts/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...